Degradation of Low Concentrations of Formaldehyde in Sono Catalytic Ozonation Advanced Oxidation Processes using Zero-valent Iron
Authors
Abstract:
The purpose of the current study is to evaluate formaldehyde degradation ratio with various methods in a batch reactor. In this work, the ozonation, sonolysis (ultrasonic), and ozone sonolysis, sono catalytic ozonation (SCO), and nano zero-valent iron catalyst processes were investigated for removal of formaldehyde. In addition, the influence of important factors such as pH (5–9), ultrasonic power (60-140 W), ozone dosage (20–200 mg hr-1), NZVI dosage (50-400 mg L-1), and initial HCHO concentration (1–20 mg L-1) were tested. The results demonstrated that the SCO process was the most efficient one amongst the process considered. The effect of important factors were also tested on the efficiency of the SCO process and maximum removal (99%) was found at a pH of 5, ultrasonic power of 100 W, ozone dosage of 200 mg hr-1, catalyst dosage of 200 mg L-1 and initial formaldehyde concentration of 15 mg L-1. The results led to the conclusion that the most effective factor was ozone dosage. Also, SCO process may be recommended for the treatment of solutions containing low formaldehyde concentrations.
similar resources
Advanced oxidation of formaldehyde in the aqueous solutions using UVC/S2O82- process: Degradation and mineralization
Background: As a human carcinogen, formaldehyde is a toxic chemical imposing adverse effects on public health and environment. Due to its high reactivity, colorless nature, sustainability, purity in commercial forms, and low prices, the production and consumption of this compound has expanded vastly in industries. Methods: In this study, a UVC photoreactor with a total volume of 120 mL was us...
full textFormaldehyde degradation by catalytic oxidation.
Formaldehyde used for the disinfection of a laminar-flow biological safety cabinet was oxidatively degraded by using a catalyst. This technique reduced the formaldehyde concentration in the cabinet from about 5,000 to about 45 mg/m3 in 8 h. This technique should prove useful in other applications.
full textProcesses of Removing Zinc from Water using Zero-Valent Iron
Zero-valent iron has received considerable attention for its potential application in the removal of heavy metals from water. This paper considers the possibility of removal of zinc ions from water by causing precipitates to form on the surface of iron. The chemical states and the atomic concentrations of solids which have formed on the surface of zero-valent iron as well as the type of the dep...
full textperformance of biological system and advanced oxidation processes (aop) treating antibiotic production industrial wastewater
در این مطالعه، عملکرد دو سیستم اکسیداسیون شیمیایی پیشرفته و یک سیستم بیولوژیکی برای حذف آموکسی سیلین در فاضلاب های سنتزیدر غلظت های مشابه با موارد صنعتی مورد بررسی قرار گرفته شدند. مطالعه انجام شده دارای سه بخش متفاوت اکسیداسیون با ازن و اشعه uv، اکسیداسیون با استفاده از نانو فتوکاتالیست tio2 و استفاده از بیوراکتور هوازی لجن فعال با جداکننده های فیزیکی می باشد. در هر بخش، متغیر های متفاوتی متنا...
15 صفحه اولResponse surface method Optimization of the Dyes Degradation using Zero-Valent Iron based Bimetallic Nanoparticle on the Bentonite Clay Surface
Immobilizing of zero-valent iron in mono- and bi-metallic systems on the bentonite clay surface as new nanocatalyst were synthesized and used to degrade model acidic dyes from aqueous media. The Fourier-transform infrared spectroscopy, scanning electron microscopy-energy dispersive X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, and Brunauer-Emmett-Teller analysis were ...
full textResponse surface method Optimization of the Dyes Degradation using Zero-Valent Iron based Bimetallic Nanoparticle on the Bentonite Clay Surface
Immobilizing of zero-valent iron in mono- and bi-metallic systems on the bentonite clay surface as new nanocatalyst were synthesized and used to degrade model acidic dyes from aqueous media. The Fourier-transform infrared spectroscopy, scanning electron microscopy-energy dispersive X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, and Brunauer-Emmett-Teller analysis were ...
full textMy Resources
Journal title
volume 30 issue 3
pages 366- 373
publication date 2017-03-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023